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APPROXIMATE SOLUTIONS OF A CLASS OF SIMILARITY EQUNI’1ONSFOR TBREE-

DIMENSIONAL, IAMINAR, INcoMPREssIELiEBOUNDARY-L4YER FLOWS

By Arthur G. Hansen and Howsrd

SUMMARY

Z. Herzig

An analysis is presented for obtaining approximate solutions of the
similarity e-@ations for three-dimensional laminar-boundary-layerflows
over a flat surface under main-flow streamlhes that are translates and

b representable as infinite series expsnsiona. For the psxticular case of
streamline shapes described by a power of the distance along the surface

4 from the leading edge, relatively simple expressions are obtained for
flow deflection
shear stress at

at the boundary surface, limiting streankhe shape, and
the surface.

momrmo~

In recent years, a great deal of attention has been focused on theo-
retical investigations of three-timensionsl incompressibleboundary-layer
flows, One class of investigations, having application to internal flow
problems in turbomachines and flow over wings at high altitudes, has been
concerned with finding exact solutions of the boundary-layer equations
when the boundary layer develops over a flat surface (e.g.~ refs. 1 to 8).
To date, all exact solutions have been based on similsrity-type boundaYy-
layer anslyses. The essence of this technique involves the reduction of
the psrtial dif~=entisl equations for the boundary layer to a system of
ordinary differential equations. The solutions for the actual boundary-
layer flow are then obtained from the solutions of the ordinary differ-
ential equations. It is generally necesssry, however, to employ numericsl
methods and M@-speed computing equipment to obtain accuxate solutions
to the or’dinaryWf erential equations because of their complex nature.
As this process is time-consuming and often laborious, it is of interest
to determine whether or not approximate solutions to such equations might
be readily obtained which would encompaEs a wide variety of boundsry-
layer flows.

Certain steps in this direction are taken in reference 9. In partic-

&
Ular, a~roximate solutions are obtained for the ordinary differential
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equations arising from the
equations correspondingto
terized by

NACA !13i4375

similarity solution of’the boundary-layer
the mainstrem flows over a flat plate charac-

U= u~ (la)

w= (conSt.) Xn (lb)

(All symbols we defined in appendix A. The orientation of the coordi-
nate axes is shown in fig. 1). The method of solution involves finding
an approximate solution of the equations corresponding to the region of
boundary-layer flow near the plate surface and then finding a sepsrate
approximate solution in the region new the main stream. The two indi-
vidual solutions sre then joined at a suitable point between these two
regions (see sMo ref. 10, which advocates this technique). Comparison
of the approximate solutions of reference 9 with complete solutions ob-
tainedby relaxation techniques shows fairly good agreement when the value
of n in equation (lb) is large (e.g., n = 10]. This corresponds to the
physical case of mainstream flows that flow for a distance without appre-
ciable turning and then turn and accelerate rapidly, generating strong
crossflows in the boundary lsyer.

The present investigation also considers approximate solutions of the
boundary-layer equations for the case of mainstream flows defined by equa-
tions (l). The reasons are twofold. First, although the approximate
solution follows the procedure (advocatedin refs. 9 and 10) of finding
separate solutions of governing equations nesr the plate surface and near
the main stream, the method of solution for the flow region nesr the plate
surface differs from that given in reference 9 and hence provides a tech-
nique of solution that Is of interest in its own right. The method pre-
sented herein is des@ned to give a more accurate approximation in the
region nesr the plate surface and should @eld improved estimates of sheer
stress and flow deflection at the surface.

Secondly, reference 5 has shown that boundsz’y-layersolutions for
Particular values of n in equation (lb) can be linearly combined to
~ield solutions of boundsxy-l~yer flows
given by

U=uo

&king from mainstream flows

(2a]

m—
(2b)

n=o

Ikcause of computing-machineand time limitations, reference 5 obtains
solutions only for a range of values of n from 1 to 10. This restricts
the analysis to consideration of main-flow streamline shapes that canbe

ij

b

D
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approximated by eleventh-degree polynomials in x. Provided accurate
w approximatee solutions can be obtained.for values of n >10, the analysis

of reference 5 could correspondinglybe extended to include the calcula-
tion of boundary layers for main-flow stresnd_ineshapes requiring approx-
imating polynomials of degree higher than U. For example, such approxi-
mating polynomials would be required for circular-arc flows having more
than 60° turning.

The results of the present investigation and the approximate solu-
tions of reference 9 are both compared with the exact solutions of refer-
ence 5, and the nature of both approximate solutions is discussed.

The work contained in this report is also included as part of a
larger study presented in a doctoral thesis (ref. 11). Another portion
of this thesis is presented in ref~ence

*

d ANALYSIS

The solution for the boundary-lwer

—
12.

velocity components for main
flows over a flat surface defined-by equations (2) is known to be (ref.
5)

v =

w

where F(q) is the well-known

where

u= ~&’ (TI) (3)

1
z r

>(@l -F) (4)

= ~ ~xnPn(q) (5]

Blasius function satisfying the equation

*1,

~+F’w=O

rUo
? ‘Y E

and Pn satisfies the equation

&
FP~

P; + —-nFrPn+.n=O
2

.

(6)
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The boundary conditions on equations (6) and (7) are
v

F(O) =F’(0) =Pn(0) = O (8) __

and

lim F~(q) = lim Pn(q) = 1 (9)

Solutions to equation (7) (flows-describedby eqs. (2)) have been obtained
for O~n~10. Approximate solutions of eqiati~n (7) are now sought for
au. n>lo. To accomplish this, an a~proximate solution is first devel-
oped for lsrge values of q (i.e., in the vicini%y of the main streem).
Solutions ere then found for small values of q (i.e., in the vicinfty of g
the bounding surface). These two solutions are then matched at a suitable
value of q.

d

k

Approximate Solution for Large q

An approximate solution of equation (7) for lsrge v and large val-
ues of n is discussed in reference 13 and will be used in the present
investigation. Basically, the solution is obtained as follows: For lsrge
values of q, it canbe shown that Yn and Pa are necessarily small.

Hence, if n is large, equation (7) can be written as FtPn M lj and,

therefore, the approximate solution for large v and n canbe given by

(10)

Essentially the same result was obtained in reference 9by considering
the upper part of the boundary layer to be a “nonviscous” region and find-
ing a solutiop of the boundary-layer equations with the viscosity term
neglected. References 9 and 13 also point out that this approximate solu-
tion applies over progressively wider %anges of values of q for progres-
sively l=ger values of n.

.

Approximate Solution for Small q

In order to obtain an approximate solution of equation (7] for small
values of V, an adaptation of an analysis used in reference 14 to cshu-
late skin-friction coefficientswill be employed. In this regsrd, a new
function ~n(~) is defined, where %n is-related to Pn by the equation s

(n)Pn=F’%n
e

Substituting equation (11) into equation (7) and employing equation (6)
give
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(12)

lKromthe series expansion for the Klasius function F (see ref. 15, p.
104) it is now assumed that F is adequately represented by

‘=~a~’ (a=’’’(O) =0.33206]

in the neighborhood of q = O. Furthermore, examination of the second
coefficient in equation (12) shows that FF1/2 is of the order of 73
relative to 2Fm~ and, hence, it is further assumed that in the neighbor-
hood of q = O the coefficient can be replacedby 2F” = 2a. Eqpation
(12} can then be written as.

(13)

At present, these approximations will be assumed sufficiently accurate
for the purpose of the investigation. Later, results obtained from equa-
tion (13) are compared with exact solutions in order to establish the
validity of the assumptions.

The solution of equation (13) can nowbe obtained analytically as
follows. Let

where

Substitution of equations (14) into equation (13) then yields
,.

(14a)

(14b)

(15)

Consider the homogeneous complementary equation formed ffom e@ation (15)

%,, +*’ -(* C2+1)%,.
Equation (16) is a form of Eessells equation and

%, c = %-J: + %K:

=0 (16)

has the general solution

(L7)
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where I% and K+ are Bessel functions.of imaginary arguments (see ref.

16 for definitions and discussion).
!?

Tables of these functions are given
in reference 17.

If the solution ~,c of the complementary

the solution of equation (15) canbe obtainedby
of parameters. An analysis using this method is
B, and the result is

equation (16) is known,

the method of variation
presented in appendix

)d~ +A@ + %K~ (18)

Hence, from equations (18), (14), and (IL), the solution for Pn “is
A

(U’j

It is now recalled that, for regions nesr
to be adequately representedby the first term
that is,

F=%

the wall, F(q) was assumed
of its series expansion

Using this approximation for F and using equation (14b), the expression
for Pn given by equation (19) becomes

.

It is to be noted that equation (20] contains two arbitrary constants
& and ~. One of these constants canbe determinedly the boundsxy

conditions Pn(o) =0. Setting ~ equel to zero in equation (20) (equiv-

alent to setting ~ = O) gives

(21) ,

.
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where the series expansions for ~(~) and K#5) (ref. 16) ere used in.

determining the equation. It fo2Jmws at once from equation (21) that

The determination of the remaining constant ~

matching of the solutions for large end smell q and
the following section.

Matching of Solutions

depends upon the

is considered in

The matching of the solutions for lexge and small 7 consists in
finding a value of ~ where the values of Pn and P: for both cases

. can be brought into agreement. The equating of the functions and the
derivatives gives a system of two simultaneous equations for the deter-
mination of ~ and the remaining arbitrary constant ~..

The value of dp~dq

Differentiating equation

can be calculated from equation (20) by taking

(20] with respect to ~ gives

Now, from reference 16 (p. 79), the following relations ere known:

(22) -

(23)

(24)

(25)

a
Successive substitution of equations (24) and (25) into equation

(23), and equation (23) into equation (22), @ves
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The corresponding value

region of the boundary layer
entiating equation (10) with

At this point, it is assumed
gion where F is reasonably

of dP#d~ for the solution of the upper

is determined from equation (10). Differ-
respect to q gives

dPn 1
z3j=——(F,)2 ‘“

(27)

that the equations can be matched in ,are-
approximated by F = aq2/2. It will be

shown later that this assumption,willbecome increasi~ accurate for
larger values of -n. Using this approximation for F and equating equa- ‘
tions ~10) and (20) and equations (26) and (27) give the following system
of simultaneous equations for ~ and the matching point ~. (Actually, -

the equations are given as functions of { and a matching value ~j ~
can then be computedby means of the relation between ~ and q given
by eq. (14b).}

From equation (28) it follows that

(30)
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Substituting equation (30) into equation (29) gives.

The solution of equation (31), whi~ @ves the ~ue of ~ at w~~
the two solutions are matched, is outlined as follows: Multij?X@g eqW-
tion (31) through by It and simpUfying give

c

( )/
I~K-~ + K#-~ ● ~ I~d~ -@I-3=;~-21~ (32)

.

.

Numerical solution of equation (33) g~v=

{=~= 2.96

It follows that ~ is given by

From
(m)

3.902
*T=—● *

.+

(33)

(34)

(35)

the value of ~ given in equation (34), it follows from equation
that the value of ~ is

From equations

& = 1.811 (36)

Calculation of Pn{q) Curves

(20), (36), md the fact that & ~ O, Pn(q) can be
expressed
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where .—

Figure 2 shows a plot of Q(~) over the range O ~ ~ ~~= 2.96. In E

order to obtain a plot of Pn(v) for a given value of n, it is necessary $!

merely to select values of

?

, determine the corresponding values of ~
from equation (14b), find Q ~) from figure 2, and then determine Pn(q]

from equation (37).

A plot of the variation of q
values of n equal to 10, 15, 20,
figures 2 and 3, curves for ‘n(~)
figure 4.

As a check on the validity of

.

with ~ is presented in figure 3 for
and 50. Using these values of n and
were calculated and are presented in

the approximate solution, values of
P1o(~) tslsenfrom reference 5 are plotted in figure 4. As the plot in-

dicates, the values of the approximate solutjon fall slightly below the
exact velues for the “middle range” of q values but agree very well

.

for large q and for q nesr zero.

Flow Behavior Nesr Bounding Surface

Values of shear stress and limiting flow deflection near the bounding
surface are of major interest in the analysis of three-dhnensional
boundary-layer flows. For the present case3 both of these quantities can
be shown to depend upon p;(o) (see ref. 5). In the following section,

therefore, an expression for P~(0) is developed from equation (26), and

value8 obtained are compared with exact values from reference 5 and the
approximate solution of reference 9.

Determination of P&(O). - From reference 16, the following expres-

sions sre noted:
.

h

$[)-3
1-: =

r+
+ higher-order terms

b

.



NACA TN 4375 11

!j

u
:
IQ
N

&-

.

.

Hence,

)l--)
14

K~=—
~c

$r$
+ higher-order terms

J
c

I-z

“dC’*

+ higher-order terms
s

(39)

o

Employing (39) and (40) in equation (26) gives

&Pn
()

~ -3

() [~

= ~-+n% ~ -* ‘n ~
~ 2 r~

+ higher-order terms

Therefore, at

The following
from equation

(40)

(41)

table gives a comparison between the values calculated
(41) and the exact values computed in reference 5:
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—
n

—

1
2
3
4
5
6
7
a
9
.0—

?~(0),exact

mlues from
:ef.5

1.418
2.197
2.858
3.450
3.995
4.506
4.989
5.449
5.891
6.317

%(o),
Bqo (41

1.354
2.149
2.816
3.412
3.959
4.4?0
4.954
5.416
5.858
6.284

It can he seen from the table that, for n = 8, 9, arid10, there is
em error of approximately 1/2 percent between the approximate solution
for PA(O) and the values presented in reference 5.

At this point it is of interest to compare the values obtained for
PA(O) in the present analysis with those obtainedby the approximation

technique in reference 90 The method employed in the reference Is based
on expressing Pn(q) as a cubic polynomial in q for small values of q

and as Pn = l/F’(q) for large values. The two solutions sre matched in

a manner similsr to that presented in the present investigation. However,
as would be apcted, the matching point ~ is not the same
analyses. In reference 9 the matching point is givenby

.
7

W.-1’+ 1+
2

2
l+~n

.

for the two

!!

(42)

It might be noted that, for very lsrge values of n in equation (42),

~ =3.6 n+. This is to be compared tith ~ = 3.902 n-~ given in equa.
tion (35).

The analysis of reference 9 yields the following expression for
P~(o]:

[

11
-z(:-*) +&F] (43,pA(0)=ev+*nV2-& -7

7 aq

.
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Figure 5 presents a plot of the values of p~(o) calctiated from equation.
(41} and from equation (43}. The ten exact values of F~(0) obtained in

reference 5 sre also plotted to show the ~eement with the approximate
solutions. The better ~eement shown by the solution given in equation
(41) may beaccmntedf orasfcillows. First of alJ.,the coefficient of
& in equation (41) is based on an exact solution of equation (13).

This is contrasted with the cubic polynomial representation in the neigh-
borhood of q = O presented in reference 9. However, this must be
weighed against the neglecting of the term FF1’/2 in the second coeffi-
cient of equation (12). For small. ~ this approximation is reasonable.
Secondly, & in equation (41) depends upon the value of ~, or equiva-

lently ~j and it might, therefore, be inferred that the value of PA(O)

would be critically influencedby the solution for Wge values of q
- end the corresponding matching of the solutions for large and small q.

However, figure 6, which presents a plot of & against ~, shows that

the value of ~. is relatively insensitive to changes in ~ for a wide

range of values. Hence, it would appear that the determination of PA(O)

in the present analysis is principally affectedly the accuracy of the
technique used to evaluate the functions in the neighborhood of T’I= O.

Flow deflection at surface. - Assume that the mainstream velocity
components sre defined by equations (2). Then, if T designates the local
angle of flow deflection at a point on the bounding surface of the flow,
it follows from equations (3) and (5) that

w
tanr=limv.

where ~ = #tTo and where L’Hospital’s

indeterminate form Pn(0)/FS(O).

As equation (41) has been shown to
. to PA(O) for all n, equation (44) can

.
tany% I!&

(44)

rule is used to evaluate the

yield a reasonable
be written as

approximation

(45]



14

where

NACA TN 4375
*

.

b:“ 1“354& =4“084
For the special case

w =8~xn

U=uo I

(46)

equation (45) becomes

Limiting streamline. - The equation for the “limiting streamline
(line of limiting flow deflection, ref. 5) attheswface can be deter- -
mined directly from the relation

where Zz is the z-coordinate of the limiting streamline.

Solution of equation (48) gives

as the approximating equation of the limiting streamline.

For flows definedby equation (46)L equation (49) becomes

(48)

Now, the main-flow streamlines for this case are given by

tigxn+l
z = ~ + constant

If the constant of integration is chosen equal to

to z is given by

zero, the ratio of Zz

—

.-

(49)
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Hence, the
determined

the origin
The entire

Z2 b*
—=~n%=4d08n%
z ?n

(50)

ortinates of the boundary-layer limiting streamline can be
at once from the ordinates of the main-flow streamline through

merely by multiplying the latter by the scale factor 4.08 n%.
system of limiting and main-flow streamlines csn then be ob-

tainedby tr-&slation psrdlel to the leading edge.

L

~ Shesr stress at surface. - The shear stress
+ is givenby

‘o = (%,X)2+(%,2)2
.

where (using eqs. (3) and (5) and the definition

at

of

the bounding surface

(51}

7)

.

It follows from equations

expressed as

(52)

(53)

(51), (52), (53), and (41) that TO can be

For flows defined by equation (46), equation (54) becomes

Therefore, for sufficiently large values of n,

(54)
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CONCLUDING REMARKS

A method has been developed for obtaining a~~roximate solutions of
the similarity equations for three-dimensional lsminar-boundary-layer
flows over a flat surface under main-flaw stresnifinesthat are translates.
The approximate solution makes possible the analysis of flows having
streamline shapes representable by polynomials of any degree.

For the particular case of stresmikLneshape describedby z = axn,
relatively simple expressions can be found for flow deflection at the
surface, limiting streenilineshapej and shesr stress at the surface.

Comparison of the approximate solution with exact solutions obtained
on high-speed computing equipment shows good agreement for values of
n = 10. In particular, the approximate solutian in the vicinity of the
plate surface shows relatively good agreement with the exact solution for
all.values of n.

.-
..

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, November 23, 1956



NACA TN 4375 17

APPENDIX A

SYMBOLS

An constants of integration

s-n

%

bn

Iv,Kv

m,n

Pn,Pn(q)

Q(!)

U,w

Uo

constants

constants of integration

constants

Blasius function (eq. (6))

function of simil.arityparameter (eq. (11))

functionof ~ (eq. (14a))

Bessel functio~ of imaginary argument (eq. (17))

constants

function of similarity parameter (eq. (7))

function of ~ (eq. (38))

components of mainstream velocity in x- and z-directions,
respectively

inlet velocity of main stream

U,v,w components of boundary-layer velocity in x,y,z directions,
respectively

X,y,z rectangular coordinates

a constsnt, =F’’(O) = 0.33206

r gamma function

T flow deflection angle at surface

c function of similarity parameter q (eq. (14b))
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n similarity parameter, ~ = y w

v coefficient of absolute viscosity

v coefficient of kinematic viscostty

‘o shear stress at wall

Subscripts:

c value of complementary function (eq. (16))

2 limiting

m constsat

n index number

X)2 x- and z-components, respectively

v order of Bessel functions

Superscripts:

I differentiation

* divisionby U (ref. 5)

value at matching point

NACATN 4375
1

.

s!
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ATPENDIX B.

DERIVATION OF EQUATION (18)
z
M
+ Let s~ and 62 be solutions of the hcnnogeneousequation obtained

from

Y“ +’ p(x)Y’ +

by setting r equal to zero. Then,
integral of (Bl) is

q(X)Y = r(X) (Bl)

reference 18 shows that the general

.

.

J
rs2 r 61

Y = -s1 -p X+s27dx

where S = sls~ -. ‘;s2“

Applying this technique to equation (15) and using I* and K* as
solutlons of (16) give the following solution for Hn:

Reference 16 shows that

Ehibstituting(B3) into (B2) then gives

(B3]

(334)

By expressing the integrals in equations (B4} as definite integrals with
additive constants, equation (18) is obtained.
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